

Smart Talk: Using Al to simulate and assess the Human Touch in Medicine

Kyran Sachdeva BHSc¹, Samantha Halman MD FRCPC MMEd², Brett Hryciw MD FRCPC³, Kordan Harvey MD BCh BAO FRCPC², Nicole Hryciw MD FRCPC²

- [1] Faculty of Medicine, University of Ottawa
- [2] Division of General Internal Medicine, Department of Medicine, The Ottawa Hospital
- [3] Division of Critical Care, Department of Medicine, University of Ottawa

Introduction

Effective and empathetic communication is central to patientcentred care and is necessary for building a trusting patientphysician relationship.¹ Therefore, the effective development of communication skills during medical school and residency is essential to becoming a well-rounded physician.¹

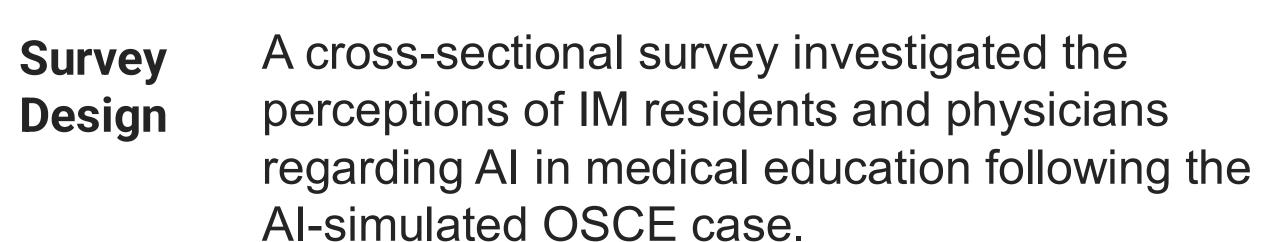
Communication skills of internal medicine (IM) residents are assessed during the Objective Structured Clinical Examinations (OSCEs) that involve stimulating clinical interactions with standardized patients (SPs).² However, coordinating SPs and physician assessors is costly and time-consuming, limiting training opportunities for IM residents.³

Generative artificial Intelligence (AI) has the potential to improve medical education by giving learners more opportunities to practice standardized patient encounters to develop their communication skills.

Objectives

The primary objectives were to:

OSCE

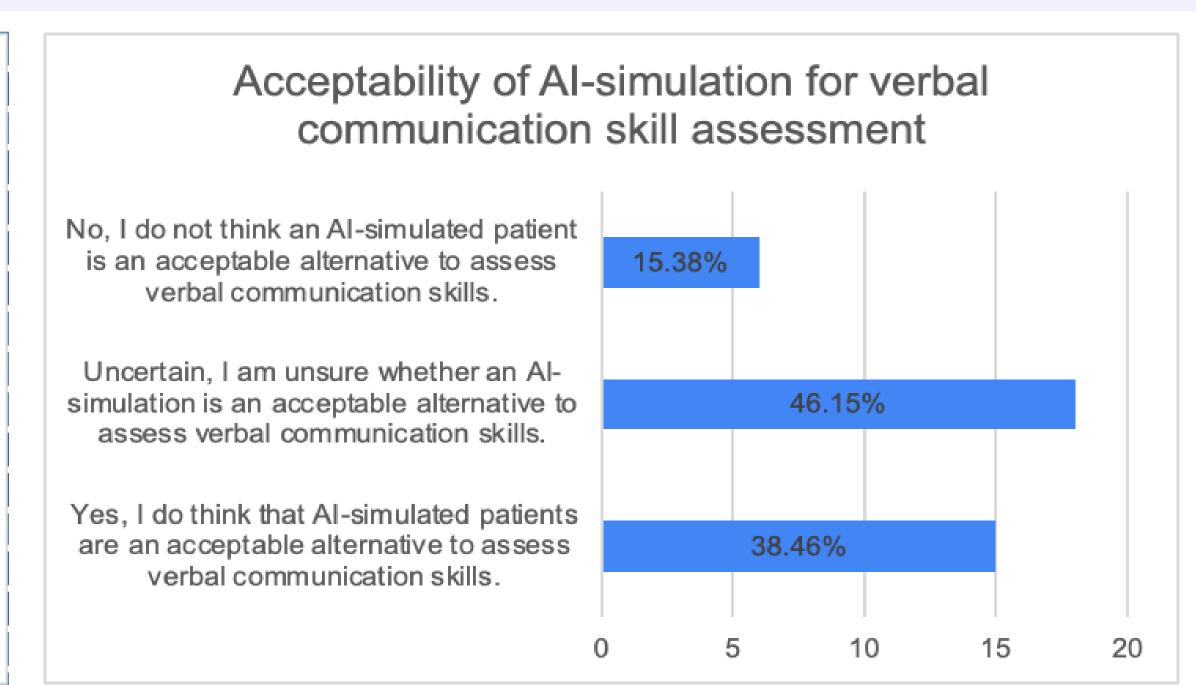

- 1) To compare AI versus physician assessments of resident performance in an IM OSCE station, and
- 2) To survey resident and physician evaluator perspectives on the use of AI in medical education.

Methods

IM residents participated in a formative OSCE station with a commercially available Al-powered telephone chatbot and assessment tool developed by Osler Al, Inc.

The AI-powered OSCE station was a clinical

Case	scenario on the disclosure of a medical error to an Al substitute decision maker.
OSCE Scoring Rubric	Scoring rubrics included a 7-item checklist (CL), a 6-item communication skill scoring scale, and a global rating scale (GRS).


Data
Analysis

Al vs physician scores were compared using mean differences. Borderline regression generated passing scores for each assessment

group.

Results

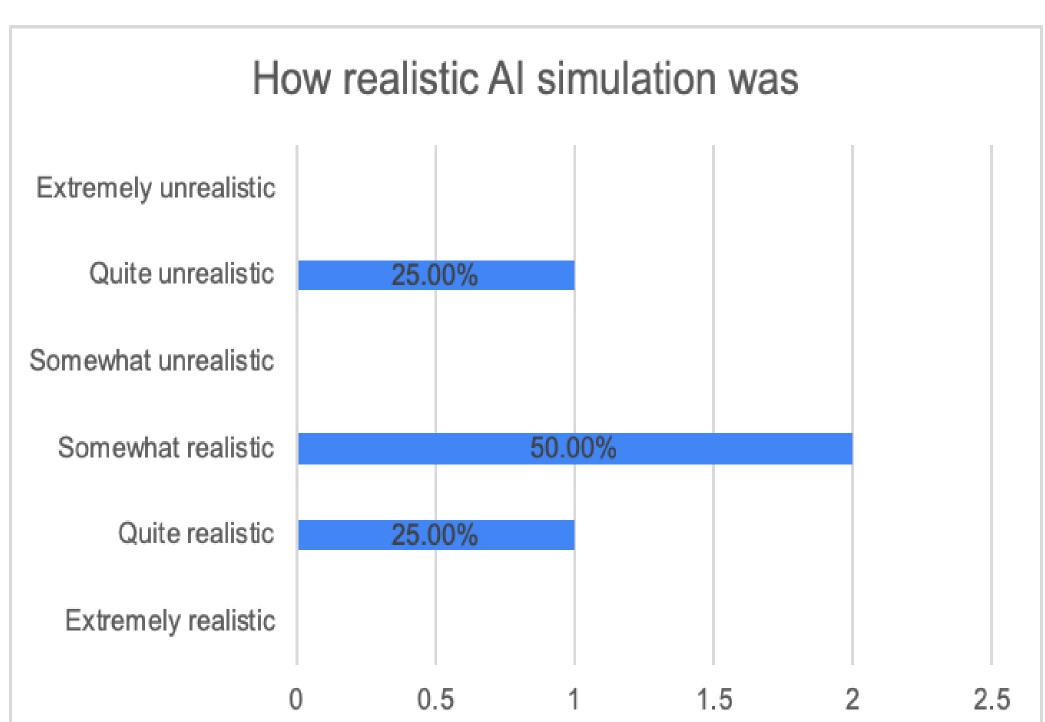

How realistic the Al simulation was Extremely unrealistic Quite unrealistic Somewhat unrealistic Somewhat realistic ACCE The Al simulation was ACCE No, I do not think an is an acceptable a verbal communication is an acceptable as a verbal communication is an acceptable and assess verbal communication is an acceptable and acceptable and acceptable and acceptable and acce

Figure 1. IM resident opinions on the realism of the Al-based OSCE station

Figure 2. IM resident opinions on AI use in OSCE assessments

Physician Survey Results

0.143

Communication Skills

Behaviour

Ethical Conduct

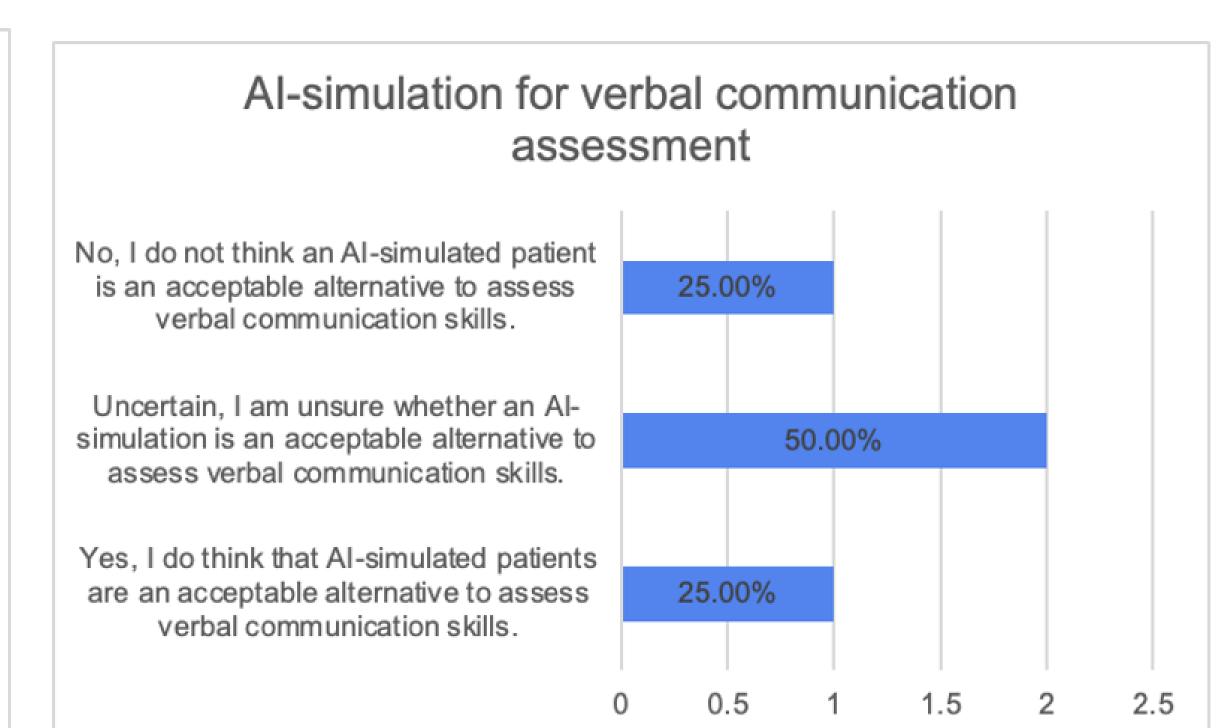


Figure 4. Physician openness to AI use in different areas of medicine overall

No

Al vs Physician OSCE Scores

Category	Mean Difference (Physician – AI)	Score Direction	P-value	Significance (p<.05)
Listening Skills	-0.057	Al Higher	0.646	No
Questioning Skills	0.200	Al Lower	0.187	No
Rapport with Patient	0	No Difference	1.000	No
Information Giving	-0.314	Al Higher	0.157	No
Professional	-0.400	Al Higher	0.005	Yes

0.131

Figure 5. Physician compared to Al assessment of IM resident OSCE communication skills

Al Lower

Results

Al vs Physician OSCE Scores

Content Checklist

Category	Mean Difference (Physician – AI)	Score Direction	P- value	Significance (p<.05)
C1	0.343	Al Lower	0.002	Yes
C2	-0.057	Al Higher	0.311	No
C3	-0.029	Al Higher	0.792	No
C4	-0.086	Al Higher	0.083	No
C5	-0.114	Al Higher	0.261	No
C6	0.029	Al Lower	0.648	No
C7	0.029	Al Lower	0.812	No

Figure 6. Physician compared to Al assessment of IM resident OSCE content performance

Overall Ratings

Category	Mean Difference (Physician – AI)	Score Direction	P-value	Significance (p<.05)
Global performance rating	-0.371	Al Higher	0.064	No
Overall score	0.000	Al Lower	1.000	No

Figure 7. Physician compared to AI assessment of IM resident OSCE overall performance

Conclusion

It is feasible to use an Al-based clinical simulation both as an SP and for learner assessment in IM OSCEs.

Our encouraging results demonstrate that generative AI and physician assessors give IM residents similar OSCE scores in most categories. More research is required to ensure the validity and reliability of AI-based clinical simulation and assessment tools prior to their implementation in communication skills training.

Acknowledgements

This study was funded by The Ottawa Hospital Department of Medicine and supported by the Ottawa Hospital Research Institute. In-kind support was generously provided by OslerAI.

References

- Tojat M, Louis DZ, Maxwell K, Markham F, Wender R, Gonnella JS. Patient perceptions of physician empathy, satisfaction with physician, interpersonal trust, and compliance at J Med Educ. 2010;1:83-87. doi:10.5116/ijme.4d00.b701

 Silligan C, Powell M, Lynagh MC, et al. Interventions for improving medical students' interpersonal communication in medical consultations. Cochrane Database
- of Systematic Reviews. 2021;2021(2). doi:10.1002/14651858.CD012418.pub2

 3. Nestel D, Tabak D, Tierney T, et al. Key challenges in simulated patient programs: An international comparative case study. BMC Med Educ. 2011;11(1):1

Evidence of Conflict of Financial Interest

	Co-author	Conflict disclosures
1	Kyran Sachdeva	None
2	Samantha Halman	None
3	Brett Hryciw	Dr. Hryciw is a co-founder of OslerAl Inc. Dr Hryciw was not involved in handling any of the raw data prior to analysis. Dr Hryciw and Osler Al did not receive any financial compensation for this study. Osler Al did not use any data from this study for the purposes of product development or marketing.
4	Kordan Harvey	Dr. Harvey s a co-founder of OslerAl Inc. Dr Harvey was not involved in handling any of the raw data prior to analysis. Dr Harvey and Osler Al did not receive any financial compensation for this study. Osler Al did not use any data from this study for the purposes of product development or marketing.
5	Nicole Hryciw	Dr. Hryciw is a co-founder of OslerAl Inc. Dr Hryciw was not involved in handling any of the raw data prior to analysis. Dr Hryciw and Osler Al did not receive any financial compensation for this study. Osler Al did not use any data from this study for the purposes of product development or marketing.