Hip fractures in the frail elderly: Is there enough evidence to guide management?

André Maddison MD FRCPC MSc
PGY5 GIM Western University
CSIM October 11, 2018
“We’re taught in residency that if a patient does not get surgical repair of a fractured hip that they will remain bed bound and die in agony with a necrotic hip infested with maggots” Staff orthopedic surgeon

“If I admit a non-op hip fracture overnight I will get crucified by my staff in the morning. As a resident, I have 1 job...get consent for OR” PGY2 orthopedic surgery
Background

• Approximately 30,000 Canadians suffer a hip fracture each year1
• 6-10% of hip fractures treated non-operatively in Canada.2,3
• Hip fracture is a sentinel event, with 1 year mortality 15-30%.4-5
• High proportion of pre-operative frailty, cognitive impairment, and co-morbidities
• Current focus on timing of surgery......but wait
What is the evidence supporting surgery for hip fractures in the frail elderly?
Methods

• Systematic literature search and review
 • 1 clinical reviewer
 • 1 clinical librarian
• Observational and randomized control trials were included if compared operative vs non-operative management of hip fractures
• No restriction on year of publication
• 733 articles, of which 718 were excluded after reviewing abstracts.
• In total, 15 articles were included in the systemic review
Randomized control trial evidence

• 2008 Cochrane review6 - **Conservative versus operative treatment for hip fractures in adults**
 • 2 published as manuscripts
 • Total 428 “elderly” patients
 • “The limited available evidence from randomized trials does not suggest major differences in outcome between non-operative and operative management”
Observational studies

<table>
<thead>
<tr>
<th>Country</th>
<th>Pop’n size (non-op %)</th>
<th>Mortality</th>
<th>Function</th>
<th>Quality of life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jain et al.</td>
<td>Canada (ON) 50,235 (11%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cram et al.</td>
<td>Canada (MB) 19,262 (7%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tay E</td>
<td>Singapore 390 (29%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gregory et al.</td>
<td>UK 102 (22%)</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Hossain et al.</td>
<td>UK 47 (53%)</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Yoon et al.</td>
<td>South Korea 84 (33%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ooi et al.</td>
<td>Singapore 84 (45%)</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Shabat et al.</td>
<td>Israel 23 (17%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dedovic et al.</td>
<td>Bosnia 66 (48%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moulton et al.</td>
<td>UK 62 (50%)</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Kawaji et al.</td>
<td>Japan 230 (10%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tan et al.</td>
<td>Singapore 2756 (26%)</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berry et al.</td>
<td>USA 3083 (15%)</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Mortality

- Non-operative 1-year mortality: 34-64%
- Operative 1-year mortality: 11-56%
- 9/13 studies identified statistically significant lower likelihood of mortality if underwent surgery at pre-specified endpoints
- Difference in mortality seen at 30 days -> 2 years
Function

- 3 retrospective studies of non-operative hip fractures: ⁹⁻¹¹
 - Approximately 50% mobilized independently after fracture
 - 55% were living in own home at last follow up
- Ooi et al. included only patient >90 years of age¹²
 - 10% of non-operative management mobilized independently (vs 38%)
- Berry et al. included only patients in NH with advanced dementia¹³
 - 5% of non-operative management mobilized independently (vs 10%)
Quality of life

- Moulton et al. 26 patients with hip fractures treated non-operatively
 - At time of discharge 89% (of those who survived) had no pain or pain well controlled with analgesia
- Berry et al. – Nursing home patients with advanced dementia
 - 70% had no pain at follow-up between 120-240 days
 - No statistically significant difference in pain, antipsychotic use, restraints use, or pressure ulcers compared to surgically treated
Conclusion

• Surgical intervention remains the gold standard for the majority of hip fractures
• Non-operative management of hip fracture does not guarantee patient will be bedbound, in NH, or in agony.
• Goals of care discussions with patients and family should focus on pre-fracture function and quality of life to guide management.
Barriers and challenges to non-operative management

- Operative management of hip fractures deeply engrained in orthopedic dogma
- Orthopedic services too busy to fully explore goals of care
- Who owns non-operative hip fractures?
References

<table>
<thead>
<tr>
<th></th>
<th>Age, mean (SD), y</th>
<th>Race</th>
<th>ADEPT score, mean (SD)b</th>
<th>Shortness of breath</th>
<th>Bedfast</th>
<th>Congestive heart failure</th>
<th>BMI <18.5</th>
<th>Bowel incontinence</th>
<th>Consumes <75% of meals</th>
<th>Pressure ulcere</th>
<th>ADL score = 28d</th>
<th>Transfer dependencee</th>
<th>CPSf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>84.0 (7.1)</td>
<td>White 2345 (89.7)</td>
<td>12.4 (2.9)</td>
<td>76 (2.9)</td>
<td>20 (0.8)</td>
<td>263 (10.1)</td>
<td>274 (10.5)</td>
<td>1579 (60.4)</td>
<td>712 (27.2)</td>
<td>85 (3.3)</td>
<td>147 (5.6)</td>
<td>1453 (55.6)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>85.1 (7.5)</td>
<td>Black 385 (82.3)</td>
<td>14.0 (3.3)</td>
<td>22 (4.7)</td>
<td>26 (5.6)</td>
<td>62 (13.2)</td>
<td>80 (17.1)</td>
<td>363 (77.6)</td>
<td>112 (23.9)</td>
<td>45 (9.6)</td>
<td>121 (25.9)</td>
<td>384 (82.1)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>83.1 (6.9)</td>
<td>Other 753 (90.7)</td>
<td>11.4 (2.6)</td>
<td>12 (1.4)</td>
<td>2 (0.2)</td>
<td>51 (6.1)</td>
<td>74 (8.9)</td>
<td>359 (43.3)</td>
<td>196 (23.6)</td>
<td>4 (0.5)</td>
<td>0</td>
<td>105 (12.7)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>83.9 (7.1)</td>
<td></td>
<td>12.8 (3)</td>
<td>1 (2.0)</td>
<td>0</td>
<td>5 (10.2)</td>
<td>8 (16.3)</td>
<td>21 (42.9)</td>
<td>11 (22.4)</td>
<td>1 (2.0)</td>
<td>0</td>
<td>8 (16.3)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>84.4 (7.1)</td>
<td></td>
<td>11.8 (2.8)</td>
<td>64 (3.6)</td>
<td>18 (1.0)</td>
<td>212 (11.9)</td>
<td>200 (11.2)</td>
<td>1220 (68.4)</td>
<td>516 (28.9)</td>
<td>64 (3.6)</td>
<td>147 (8.2)</td>
<td>1348 (75.6)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>85.3 (7.5)</td>
<td></td>
<td>14.3 (3.2)</td>
<td>21 (5.0)</td>
<td>26 (6.2)</td>
<td>57 (13.6)</td>
<td>72 (17.2)</td>
<td>342 (81.6)</td>
<td>101 (24.1)</td>
<td>44 (10.5)</td>
<td>121 (28.9)</td>
<td>376 (89.7)</td>
<td>6</td>
</tr>
</tbody>
</table>
Hornby *et al*. 1989

- 106 patients randomized to surgery vs traction (non-op)
 - Average patient was female in early 80’s, 40% living independently
- In hospital:
 - No difference in rates confusion, sedative use, or pressure ulcers
- At 6 months:
 - No difference in mortality (24% in operative vs 22% in non-operative) or pain
 - But... 2x rate of “loss of independence” for non-operative group